Uniform distribution of polynomials over GF{q, x} in GF[q, x], part II
نویسندگان
چکیده
منابع مشابه
An Approximation Algorithm for the Number of Zeros of Arbitrary Polynomials over GF[q]
We design the rst polynomial time (for an arbitrary and xed eld GFq]) (;)-approximation algorithm for the number of zeros of arbitrary polynomial f(x 1 ; : : :; x n) over GFq]. It gives the rst eecient method for estimating the number of zeros and nonzeros of multivariate polynomials over small nite elds other than GF2] (like GF3]), the case important for various circuit approximation technique...
متن کاملAn Approximation Algorithm for the Number
We design the rst polynomial time (for an arbitrary and xed eld GFq]) (;)-approximation algorithm for the number of zeros of arbitrary polynomial f(x 1 ; : : :; x n) over GFq]. It gives the rst eecient method for estimating the number of zeros and nonzeros of multivariate polynomials over small nite elds other than GF2] (like GF3]), the case important for various circuit approximation technique...
متن کاملOn the Number of Nowhere Zero Points in Linear Mappings
Let A be a nonsingular n by n matrix over the finite field GFq, k = bn2 c, q = p, a ≥ 1, where p is prime. Let P (A, q) denote the number of vectors x in (GFq) such that both x and Ax have no zero component. We prove that for n ≥ 2, and q > 2 ( 2n 3 ) , P (A, q) ≥ [(q − 1)(q − 3)](q − 2)n−2k and describe all matrices A for which the equality holds. We also prove that the result conjectured in [...
متن کاملHyperbolicity of the family $f_c(x)=c(x-frac{x^3}{3})$
The aim of this paper is to present a proof of the hyperbolicity of the family $f_c(x)=c(x-frac{x^3}{3}), |c|>3$, on an its invariant subset of $mathbb{R}$.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Indagationes Mathematicae (Proceedings)
سال: 1970
ISSN: 1385-7258
DOI: 10.1016/s1385-7258(70)80024-5